class Statsample::Regression::Multiple::AlglibEngine
Class for Multiple Regression Analysis Requires Alglib gem and uses a listwise aproach. Faster than GslEngine on massive prediction use, because process is c-based. Prefer GslEngine if you need good memory use. If you need pairwise, use RubyEngine Example:
@a=[1,3,2,4,3,5,4,6,5,7].to_vector(:scale) @b=[3,3,4,4,5,5,6,6,4,4].to_vector(:scale) @c=[11,22,30,40,50,65,78,79,99,100].to_vector(:scale) @y=[3,4,5,6,7,8,9,10,20,30].to_vector(:scale) ds={'a'=>@a,'b'=>@b,'c'=>@c,'y'=>@y}.to_dataset lr=Statsample::Regression::Multiple::AlglibEngine.new(ds,'y')
Class for Multiple Regression Analysis Requires Alglib gem and uses a listwise aproach. Faster than GslEngine on massive prediction use, because process is c-based. Prefer GslEngine if you need good memory use. If you need pairwise, use RubyEngine Example:
@a=[1,3,2,4,3,5,4,6,5,7].to_vector(:scale) @b=[3,3,4,4,5,5,6,6,4,4].to_vector(:scale) @c=[11,22,30,40,50,65,78,79,99,100].to_vector(:scale) @y=[3,4,5,6,7,8,9,10,20,30].to_vector(:scale) ds={'a'=>@a,'b'=>@b,'c'=>@c,'y'=>@y}.to_dataset lr=Statsample::Regression::Multiple::AlglibEngine.new(ds,'y')
Public Class Methods
_load(data)
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 47 def self._load(data) h=Marshal.load(data) self.new(h['ds'], h['y_var']) end
new(ds,y_var, opts=Hash.new)
click to toggle source
Calls superclass method
# File lib/statsample/regression/multiple/alglibengine.rb, line 20 def initialize(ds,y_var, opts=Hash.new) super @ds=ds.dup_only_valid @ds_valid=@ds @dy=@ds[@y_var] @ds_indep=ds.dup(ds.fields-[y_var]) # Create a custom matrix columns=[] @fields=[] @ds.fields.each{|f| if f!=@y_var columns.push(@ds[f].to_a) @fields.push(f) end } @dep_columns=columns.dup columns.push(@ds[@y_var]) matrix=Matrix.columns(columns) @lr_s=nil @lr=::Alglib::LinearRegression.build_from_matrix(matrix) @coeffs=assign_names(@lr.coeffs) end
Public Instance Methods
_dump(i)
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 44 def _dump(i) Marshal.dump({'ds'=>@ds,'y_var'=>@y_var}) end
build_standarized()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 89 def build_standarized @ds_s=@ds.standarize columns=[] @ds_s.fields.each{|f| columns.push(@ds_s[f].to_a) unless f==@y_var } @dep_columns_s=columns.dup columns.push(@ds_s[@y_var]) matrix=Matrix.columns(columns) @lr_s=Alglib::LinearRegression.build_from_matrix(matrix) end
coeffs()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 52 def coeffs @coeffs end
constant()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 76 def constant @lr.constant end
lr_s()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 83 def lr_s if @lr_s.nil? build_standarized end @lr_s end
matrix_resolution()
click to toggle source
Coefficients using a constant Based on www.xycoon.com/ols1.htm
# File lib/statsample/regression/multiple/alglibengine.rb, line 57 def matrix_resolution mse_p=mse columns=@dep_columns.dup.map {|xi| xi.map{|i| i.to_f}} columns.unshift([1.0]*@ds.cases) y=Matrix.columns([@dy.data.map {|i| i.to_f}]) x=Matrix.columns(columns) xt=x.t matrix=((xt*x)).inverse*xt matrix*y end
process(v)
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 100 def process(v) @lr.process(v) end
process_s(v)
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 103 def process_s(v) lr_s.process(v) end
r()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 70 def r Bivariate::pearson(@dy,predicted) end
r2()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 67 def r2 r**2 end
sst()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 73 def sst @dy.ss end
standarized_coeffs()
click to toggle source
# File lib/statsample/regression/multiple/alglibengine.rb, line 79 def standarized_coeffs l=lr_s assign_names(l.coeffs) end
standarized_residuals()
click to toggle source
???? Not equal to SPSS output
# File lib/statsample/regression/multiple/alglibengine.rb, line 107 def standarized_residuals res=residuals red_sd=residuals.sds res.collect {|v| v.quo(red_sd) }.to_vector(:scale) end